双碳背景下多端口能量路由器的应用与介绍
发布时间:
2021-07-29 17:01
来源:
原创
能量路由器概述
中国电科院的研究人员根据不同电压、容量和应用功能的不同将其重新命名为:“能量路由器(energy router)”、“电能交换器(energy switcher)”和“电力集能器(energy hub)”。
能量路由器
以电能为核心,可汇集和管理电、冷、热、燃气以及其他形式的能源,具备能量灵活转化、变换、传递和路由功能,并实现能源物理系统与信息系统的融合,是支持呢能源互联网的核心装置。
电能路由器
是能源路由器(能量路由器)的基本形式,可独立使用。它以电能为控制对象,具备三个或以上电能端口,具备不同电气参数电能之前的灵活变换、传统和路由功能,并实现电气物流系统与信息系统的融合。
研旭能量路由器特点
1、传统信息流控制、DSP(C6000)控制和快速原型控制器都可以根据用户的需求进行定制。
2、能量路由器可以进行二次开发,可提供能量路由器的所有源代码。
3、交流端口、直流端口可根据客户需求进行定制。
5、直流端口电压等级,可以根据用户需求进行复用
6、具备策略调度系统功能
7、通讯接口或人机界面,具备ms级别的通讯速率
一、基于多端口变换器的能量路由器构架
下图是典型的多端口能量路由器的工业应用, 控制分布式能源、储能出力,协调与电网/负荷间能量转换、灵活控制的核心部件,实现配电系统中源-储-网-荷的能量交换。


多端口能量路由器拓扑
南京研旭公司推出了低压多端口能量路由器,多端口交直流柔性变换器具备N个交流端口(可选),N个直流端口(可选)。每个端口均可接入相应电压等级的有源或无源设备,任意端口间可以实现功率潮流的控制。
南京研旭创新性的采用了单独的统一控制器,摒弃了传统的多分布式控制器通讯控制的方式,将所有变流器的控制由统一控制器完成控制,保证了系统严格意义上的实时性和即插即用功能。
配置液晶显示界面,可以实现就地人机交互。本变换器主要应用于微电网、低压主动配电网及交直流混合低压配电网的科研、小型示范等场合。
二、能量路由器的典型应用
能量路由器作为主动配电网的电能接入装置,其最基本的任务是管理接入电源和负荷、寻求最优路径。但能量路由器应用在电网的不同位置将承担不同的具体任务。
能量路由器在用户侧的应用
当能量路由器用于配电网末端时,直接与分布式能源DER相连,分布式能源主要有分布式电源、分布式储能设备及负载。
能量路由器作为配电网中使用简单的、即插即用的能源接入装置,当分布式能源接入能量路由器的接口时,能量路由器应能够检测到分布式能源的插入,迅速监测分布式能源的类型及用电参数,并给予相应的回应。考虑到实时电价,能量路由器可以根据电价信息动态调整用电负荷。如在居民区白天电价低,居民用户的能量路由器可将有需求的可控电力设备接入配电网;而在工业区的电价信息可能是白天较高,而晚上较低,能量路由器可以将实时性低的可控负荷安排到夜间。
能量路由器在配电网中的应用
在配电网中,若能量路由器用于区域电网入口,不仅能够采集区域电网的用电信息,而且还可以与配电网中其他能量路由器相互通信。不仅可以实现区域网内分布式电能的有效利用,而且能够使整个配电网达到能源的最优化配置。 能量路由器在配电网中运行在并网运行模式下时,能量路由器将其所控制的区域(如微网)连接到配电网干线上,区域电网通过能量路由器从电网索取电能或向电网提供电。作为能流调节器,能量路由器根据区域电网对电能的需求情况进行调度,在区域电网或大电网出现故障时,能量路由器运行在孤岛模式,与配电网隔离。此时,区域电网中的当地负荷需同分布式可再生电源及储能设备协调运行。
三、能量路由器协调控制方法
利用协调控制方法来实现分布式能源的高效利用、多种类接口单元的能量协调控制。
设备级控制面向底层接口变换器,接口变换器接入能源的种类、变换器类型、控制目标不同,变换器级控制方法也不同。变换器级控制方法有:最大功率点跟踪、母线电压控制、直接功率控制、PQ 控制(恒功率控制)、V/F 控制(恒压恒频控制)、VSG 控制(虚拟同步机控制)、Droop 控制(下垂控制)、恒压/恒流/恒功率充放电控制等。
系统级控制面向系统运行目标,通过对系统内各接入能源和负载变换器进行集中管理,实现能量管理和目标最优运行。变换器级控制与系统级控制组成了整个能量路由器的控制体系。

四、能量路由器策略调度
能量路由器策略调度以直流母线电压为主信号,以蓄电池 SOC 为辅助信号,控制中央管理层综合各信息进行模式判断,并在模式变化时将控制指令下发给底层控制层,通过底层控制层来实现对各功能单元变换器的调节,最终实现母线电压稳定、系统功率平衡。
并网状态下:根据各个端口所需能量进行调配,当系统自发能量不足时可从主电网进行能量传输。孤岛状态下:主要是针对主电网脱落时的孤岛运行情形,多端口能量路由器需要孤岛运行,支撑整个主电网。
能量路由器设备在每个子微网中都是充当了分布式电源(发电)或者负载(耗电)的作用。针对每个子网需要判断其能量流动方向以及大小,整体系统的控制,主要交由上位机能源调度系统来完成。
五、能量路由器监控软件平台
1、监测与显示功能:上位机平台通过通讯口(以太网、CAN)与能量路由器进行信息交互,能显示能量路由器的端口电压、功率、负荷等多种信息;
2、控制功能:通过上位机平台能对能量路由器发布指令,如并网功率因数控制、各端口的功率控制,光伏发电MPPT控制与给定功率控制;
3、上位机平台接受路由器上传数据及电网信息,正常运行方式下不干预路由器运行;异常情况下,综合处理各项信息后,可统一发布指令至各路由器;
4、能量路由管理:高峰时段,蓄电池进行放电控制,光伏进行MPPT控制;低谷时段,市电供给负载,储能电池进行充电控制。一般情况下,由底层能量路由器自行进行控制,高峰时段、低谷时段则由平台进行设置;

研旭多端口能量路由器监控界面
六、现场实物照片

研旭多端口能量路由器实物照片
相关新闻
深圳见——第四届中国电力电子与能量转换大会暨展览会 中国电源学会第二十八届学术年会
南京研旭展台位置:20号馆D18 2025年11月8日-9日,由中国电源学会主办,第四届中国电力电子与能量转换大会暨展览会 中国电源学会第二十八届学术年会,将在深圳国际会展中心(宝安新馆)18 号馆 & 20 号馆(广东省深圳市宝安区福海街道展城路 1 号)召开举行。
祝贺【中国矿业大学(北京)】机械与电气工程学院发表高质量论文
中国矿业大学(北京)电力电子与电力传动技术团队针对传统有源电力滤波器(APF)依赖锁相环和电网电压传感器导致动态性能受限等问题,提出了一种无锁相环、无电网电压传感器的改进型无差拍控制策略。通过引入延时补偿和电感在线识别方法,有效解决了控制延时和参数失配带来的性能下降问题。在实验中,采用了南京研旭三相可编程电源YXACS15-YZ提供电网电压,整流桥与电阻性负载构成谐波源,补偿部分使用南京研旭YXPHM-MMCFB01 系列三相逆变器及滤波电感,控制器为南京研旭YXSPACE-SP6000,直流侧配置大容量电容维持母线电压稳定,测试部分包括功率分析仪和示波器。通过对比带锁相环的PIRC控制方法,实验表明,所提出的方法在稳态下将电网电流总谐波畸变率(THD)降低至 3.9%,在负载突变及低电压穿越过程中,电网电流无超调,暂态时间短暂,验证了所提方法的快速性、稳定性和鲁棒性。
三电平中性点箝位(NPC)变换器的性能取决于中性点(NP)电压平衡。因此,中性点电压的有源电压调节能力是 NPC 转换器的关键要求。本文提出了一种主动空间矢量调制策略。它能准确利用开关周期中的零电平占空比调整量,从而在降低电容器电压纹波的同时主动控制 NP 电压。此外,还为寻址调制策略选择了与低共模电压(CMV)相关的开关状态。与传统的空间矢量脉宽调制相比,所提出的方法在实现 NP 电压平衡方面具有更快的响应速度、更低的 CMV 和电容器纹波。最后,在三电平NPC逆变器上的实验结果证明了所提调制策略的可行性和有效性。 实验装置包括一个直流电源、一个快速控制原型控制器(RCP)、一个YXPHM-TP310b-I三电平三相DC-AC变流模块、一个三相RL负载、一台个人计算机(PC)和一台示波器。直流电源为YXPHM-TP310b-I三电平三相DC-AC变流模块供电, DC-AC变流模块随后连接到三相RL负载。该测试台设计用于在各种操作条件下对NPC逆变器进行系统评估。
祝贺【中国矿业大学】发表三相PWM整流器启动冲击电流的抑制策略高水平论文
中国矿业大学大功率电力传动与变流智能控制团队针对三相PWM整流器启动冲击电流较大等问题,研究了一种基于线性跟踪微分器(LTD)的软启动策略。通过动态地调整直流母线电压参考值的斜率,可以有效抑制整流器启动冲击电流。此外,利用牛顿迭代法研究了LTD参数与时间t的关系。在文中使用了南京研旭YXPHM-TP210b-SBTB背靠背 AC-DC-AC 模组,控制器为 TI 公司TMS320F28377D,交流和直流电流传感器型号为 HCC100BS,开关管是安森美的 NTH4L040N120SC1-D,将所提方法与分段式给定方法进行对比,通过该实验平台很有效的验证了本文的方法。
扬州大学和南京航空航天大学的研究人员提出一种新型直流电弧模型——指数分段噪声模型。该模型通过建立频率值与谱能量之间的指数关系,精准刻画电弧噪声特性。为实现该模型的参数精确提取,设计了一种新的元启发式算法——反馈混沌增长优化器(feedback chaotic growth optimizer,FCGRO)。FCGRO 在传统增长优化器(GRO)基础上引入反馈算子与混沌机制。首先,在三个经典工程优化基准问题上,通过对比实验严格评估 FCGRO 的收敛性能。随后,依托已搭建的实验平台获取的数据,采用 FCGRO 与 8 种当前最先进算法,对 DC 电弧故障的指数分段噪声模型进行参数提取。FCGRO 所得结果的总体平均均方根误差为 0.0418,标准差为 0.00818,低于其余 8 种对比优化方法,表明其参数估计的结果更准确、更稳定。在计算效率方面,FCGRO 在 9 种算法中位列第三,证明了其计算效率具有一定的竞争力。最后,对比实验证明了所提直流电弧模型的性能。
