物联网 (IoT) 所面临的6大挑战
发布时间:
2016-02-27 01:57
来源:
无论是智能住宅、联网汽车还是智能工厂,所有智能化技术的核心都是设备间的网络互联,而这正是我们耳熟能详的物联网(IoT)。
互相通信,或是通过互联网进行沟通。面对如此迅速的普及和发展,我们也面临着一些新的挑战:如何才能使IoT易于使用,并且具有较高的性价比和效率呢?
通过与德州仪器(TI)众多IoT专家的深入交流,他们给出了解决这些挑战的关键,并特别强调了针对消费类、工业和汽车领域的IoT应用。
1. 低功耗是重中之重
IoT从一个利基市场(小众市场)不断发展成为了一个几乎将我们生活各个方面都连接在一起的庞大网络,面对如此广泛的应用,功耗是至关重要的。在IoT领域中,许多联网器件都是配备有采集数据节点的微控制器 (MCU)、传感器、无线设备和制动器。通常情况下,这些节点将由电池供电运行,或者根本就没有电池,而是通过能量采集来获得电能。特别是在工业装置中,这些节点往往被放置在很难或者无法接近的区域。这意味着,它们必须能够在单个纽扣电池供电的情况下实现长达数年的运作和数据传输。
“电池的安装、养护和维修不仅难度很高,同时也会带来高昂的开销,而在某些车间或厂房内,这些操作甚至具有危险性,”关注无线和低功耗充电的Harsha表示。“我们的目标就是让用户在器件的使用寿命内无需更换电池。”
Harsha和他的团队正在研究尽可能延长微型电池供电时间的方法:
太阳能——无论是室内或是户外光源,即使是只从光源中采集很少的能量,其影响也是巨大的。
温差——通过工厂中某一物件的内外环境温差,也能够实现能量的采集,例如温度高于外部空气的高温液体管道。
振动——在工业装置中,车间内机器所产生的振动也能被用于能量采集。
射频 (RF)——例如通过住所内来自Wi-Fi® 的无线电波,为支持IoT节点的电池生成一个小电荷。
“其目的在于将电池的使用寿命延长10%或20%。虽然消费类电子元器件更新换代的速度似乎越来越快,但是工业应用中的IoT技术可以持续很长的时间。通过使用能量采集来延长电池使用寿命,一块电池可以持续供电20到30年,直到所有的节点需要更换。在某些情况下,由于能量采集的使用,这些节点甚至可以实现无电池运行,”Harsha说道。
2. 感测必不可少
如果没有感测,那么IoT也将不复存在。传感器、微型器件和节点是构成整个IoT系统的基石,它们能够测量一切产生数据同时发送给其它节点或云端的事物。无论是感测住宅的房门是否关闭还是汽车的机油是否需要更换,亦或是生产线上的某个设备会不会出现故障,传感器采集到的都是关键信息。
“感测在需要做出决策的时候便会发挥其作用,这一过程不一定需要人工干预,”电流感测领域的Jason说道。“如果传送带正在传输某个物体,传感器能够帮助确定这个物体是什么、重量几何以及传送带是否过热等。例如,分析电机内的电流能够让人们了解电机的健康状况,是不是出现了什么故障。这些都是在进行工厂控制时需要了解的内容,而传感器使这一切变为可能。当提供实时数据时,这些重要数据的结合将影响到方方面面。”
由于传感器采集了如此大量的数据,特别是在工业物联网 (IIoT) 中更是如此,Jason认识到,传感器软件的创新与传感器硬件的创新同样重要。
“当获得了如此大量的信息时,如何确定信息是不是过多,或者掌握的数据根本就是无用的呢?其中缺少的一环就是算法。一旦有了这些算法,并且在工厂内得以充分利用,它们将改变制造业。制造业的布局,即产品生产所占用的空间,将会缩小。工厂会变得越来越小,而效率越来越高。”Jason说道。
3.连通性选择:由繁化简至关重要
一旦传感器数据被低功耗节点采集,这些数据必须被传送到某个地方。在大多数情况下,它会被传送至一个网关,这是IoT系统中互联网与云或其它节点之间的中点。
目前,根据独特的使用情况和不同的需求,可以选择多种有线或无线的方式来连接设备。14项不同连通性标准和技术中的每一项都有其特殊的价值和用途,不过将Wi-Fi、Bluetooth®、Sub-1 GHz和以太网中的所有这些标准都整合起来却是一项巨大的工程。
“由于产品的多样性,以及需要将连通性添加到很多不同且大多数此前不具备互联网连通性的产品中,这就需要采用复杂的技术,并使其变得更加简单。这也是我们目前工作中很大的一部分,” IoT战略市场总监Gil说。
4. 管理云端连通性是关键
一旦数据通过一个网关,它在大多数情况下会直接进入云端;在这里,数据被分析、检查,然后付诸实施。IoT的价值源自云端服务上运行的数据。正如连通性一样,也有很多云端服务的选择,这也是IoT领域内的另外一个复杂点。
“云端供应商的种类繁多,数量也不尽相同,并且没有针对云端设备连接和管理方式的标准,”Gil说。“为了满足那些使用多个云端服务的用户需求,我们已经开发出最大的IoT云端生态系统,这个系统拥有超过20家云端服务供应商,能够提供集成的TI技术解决方案。”
Gil相信,由于云端技术已经实现了良好的成本效益,IoT正以极快的步伐飞速发展。不过,为了实现IoT的进一步增长,在复杂度简化方面还有很多工作要做。
5.安全性是广泛采用的关键
Gil认为,整个系统的安全性是IoT被广泛采用的最大障碍。随着越来越多的设备变得“智能化”,将会出现更多的潜在安全性漏洞。我们的团队正在研究构建最先进硬件安全机制的方法,与此同时,我们要将这些安全机制的大小、成本和功耗保持在较低的水平上。更为重要的是,我们在集成安全协议和安全性软件方面投入了大量的人力物力,以使安全性的实现对于用户来说尽可能的简单。
“我们正在努力减少把高级安全性功能添加到IoT产品中时所遇到的障碍,”Gil表示。
6.为经验不足的开发人员提供更简易的IoT解决方案
首先,IoT技术曾经主要由技术公司使用。不过目前甚至在未来的一段时间里,IoT将在有着一定技术背景限制的行业中使用。
例如,以一个生产龙头的公司为例。直到目前,由于没有任何需求,电气工程师也许从未在龙头制造公司工作过。但是,如果这家公司打算生产接入互联网的花洒,那么这家公司在人力和时间方面的投入将是巨大的。因此,IoT技术必须能够轻松地添加到现有和未来的用户产品中,而无需网络和安全工程师参与其中。
“这些公司不需要像一家互联网技术公司那样,在技术学习方面做出投入,其原因在于,他们现在可以从诸如TI这样的公司那获得现成可用的技术,”Gil说。
由于我们生活中越来越多的事物正在与网络建立互联,并且随着IoT的扩增,还有大量的工作需要去完成。对于像Gil这样的TI员工来说,努力工作才是对所付出的时间和精力的最好回报。
“它是对我们未来方方面面高品质生活的巨大展望。这包括我们的住所、汽车和高效工厂内的用户便利性和生活方式,而这一切将最终使我们的世界变得更加美好,”他说。
相关新闻
深圳见——第四届中国电力电子与能量转换大会暨展览会 中国电源学会第二十八届学术年会
南京研旭展台位置:20号馆D18 2025年11月8日-9日,由中国电源学会主办,第四届中国电力电子与能量转换大会暨展览会 中国电源学会第二十八届学术年会,将在深圳国际会展中心(宝安新馆)18 号馆 & 20 号馆(广东省深圳市宝安区福海街道展城路 1 号)召开举行。
祝贺【中国矿业大学(北京)】机械与电气工程学院发表高质量论文
中国矿业大学(北京)电力电子与电力传动技术团队针对传统有源电力滤波器(APF)依赖锁相环和电网电压传感器导致动态性能受限等问题,提出了一种无锁相环、无电网电压传感器的改进型无差拍控制策略。通过引入延时补偿和电感在线识别方法,有效解决了控制延时和参数失配带来的性能下降问题。在实验中,采用了南京研旭三相可编程电源YXACS15-YZ提供电网电压,整流桥与电阻性负载构成谐波源,补偿部分使用南京研旭YXPHM-MMCFB01 系列三相逆变器及滤波电感,控制器为南京研旭YXSPACE-SP6000,直流侧配置大容量电容维持母线电压稳定,测试部分包括功率分析仪和示波器。通过对比带锁相环的PIRC控制方法,实验表明,所提出的方法在稳态下将电网电流总谐波畸变率(THD)降低至 3.9%,在负载突变及低电压穿越过程中,电网电流无超调,暂态时间短暂,验证了所提方法的快速性、稳定性和鲁棒性。
三电平中性点箝位(NPC)变换器的性能取决于中性点(NP)电压平衡。因此,中性点电压的有源电压调节能力是 NPC 转换器的关键要求。本文提出了一种主动空间矢量调制策略。它能准确利用开关周期中的零电平占空比调整量,从而在降低电容器电压纹波的同时主动控制 NP 电压。此外,还为寻址调制策略选择了与低共模电压(CMV)相关的开关状态。与传统的空间矢量脉宽调制相比,所提出的方法在实现 NP 电压平衡方面具有更快的响应速度、更低的 CMV 和电容器纹波。最后,在三电平NPC逆变器上的实验结果证明了所提调制策略的可行性和有效性。 实验装置包括一个直流电源、一个快速控制原型控制器(RCP)、一个YXPHM-TP310b-I三电平三相DC-AC变流模块、一个三相RL负载、一台个人计算机(PC)和一台示波器。直流电源为YXPHM-TP310b-I三电平三相DC-AC变流模块供电, DC-AC变流模块随后连接到三相RL负载。该测试台设计用于在各种操作条件下对NPC逆变器进行系统评估。
祝贺【中国矿业大学】发表三相PWM整流器启动冲击电流的抑制策略高水平论文
中国矿业大学大功率电力传动与变流智能控制团队针对三相PWM整流器启动冲击电流较大等问题,研究了一种基于线性跟踪微分器(LTD)的软启动策略。通过动态地调整直流母线电压参考值的斜率,可以有效抑制整流器启动冲击电流。此外,利用牛顿迭代法研究了LTD参数与时间t的关系。在文中使用了南京研旭YXPHM-TP210b-SBTB背靠背 AC-DC-AC 模组,控制器为 TI 公司TMS320F28377D,交流和直流电流传感器型号为 HCC100BS,开关管是安森美的 NTH4L040N120SC1-D,将所提方法与分段式给定方法进行对比,通过该实验平台很有效的验证了本文的方法。
扬州大学和南京航空航天大学的研究人员提出一种新型直流电弧模型——指数分段噪声模型。该模型通过建立频率值与谱能量之间的指数关系,精准刻画电弧噪声特性。为实现该模型的参数精确提取,设计了一种新的元启发式算法——反馈混沌增长优化器(feedback chaotic growth optimizer,FCGRO)。FCGRO 在传统增长优化器(GRO)基础上引入反馈算子与混沌机制。首先,在三个经典工程优化基准问题上,通过对比实验严格评估 FCGRO 的收敛性能。随后,依托已搭建的实验平台获取的数据,采用 FCGRO 与 8 种当前最先进算法,对 DC 电弧故障的指数分段噪声模型进行参数提取。FCGRO 所得结果的总体平均均方根误差为 0.0418,标准差为 0.00818,低于其余 8 种对比优化方法,表明其参数估计的结果更准确、更稳定。在计算效率方面,FCGRO 在 9 种算法中位列第三,证明了其计算效率具有一定的竞争力。最后,对比实验证明了所提直流电弧模型的性能。
